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Abstract 

Theory of peak integration is revised for very narrow peaks. It is shown, that 

Trapezoidal rule area is efficient estimate of full peak area with extraordinary low error. 

Simpson’s rule is less efficient in full area integration. Theoretical conclusions are 

illustrated by digital simulation and processing of experimental data. It was shown that 

for Gaussian peak Trapezoidal rule requires 0.62 points per standard deviation (2.5 

points per peak width at baseline) to achieve integration error of only 0.1%, while 

Simpson’s rule requires 1.8 times higher data rates. Asymmetric peaks require higher 

data rates as well. Reasons of poor behavior of Simpson’s rule are discussed; averaged 

Simpson’s rules are constructed, these rules coincide with those based on Euler-

Maclaurin formula. Euler-Maclaurin rules can reduce error in the case of partial peak 

integration. Higher peak moments (average retention time, dispersion, skewness, etc.) 

also exhibit extraordinary low errors and can potentially be used for evaluation of peak 

shape. 

Keywords: narrow chromatographic peak; data sampling error; Simpson’s rule; 

Trapezoidal rule; integration; Euler-Maclaurin formula. 
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1. Introduction 

Extension of data rate range in the direction of low data rates is an important capability 

that can be very useful in the case of fast chromatography, hyphenated techniques, 

chromatography–mass spectrometry data processing. These techniques sometimes 

produce data with quite little number of points per peak, and capability to extract useful 

information from these data can significantly help researchers.  

In this article we focused on the theory of data processing in the case of very low data 

rates, typically considered as unacceptable due to insufficient number of points per 

peak [1]. Main attention is paid to peak area, which is the major metrological 

characteristic of the peak.  

The task of evaluation of sufficient data rate in chromatographic analysis started to be 

discussed in early 1970’s [2–9]  after appearance of computer data processing in 

chromatography. Authors paid great attention to influence of noise level, in most studies 

proper determination of peak height, width and asymmetry factor was required. 

Approaches to the problem of area integration were usually based on: 

1) theoretical conclusions made using Fourier transform and information theory: 

according to [6] 0.9 pts/σ is needed to achieve <0.1% of integration error; 

2) digital modeling experiments: according to [7] 0.5 pts/σ is needed to achieve 

<1% of integration error, lower error limits were not achieved due to noise 

simulation. Seeley [9] studied dependence of peak parameters on duty cycle 

using rectangle rule and confirmed value of 0.5 pts/σ for small duty cycles;  

3) theoretical conclusions made using textbook error formulas for integration rules: 

Тrapezoidal integration rule requires 14 pts/σ to achieve <0.1% of integration 

error [8]; Simpson’s rule for the same accuracy requires 1.7 pts/σ [2] or 2.5 pts/σ 

[8]. 

All data rate requirements correspond to Gaussian peak. In papers that used textbook 

error formulas [2,8] no digital modelling was made; estimates were based entirely on 

theoretical considerations. Requirement of such a large number of points per peak in 

third approach contradicts results of first two approaches [3,4,6], and our own 

estimates. We decided to revise argumentation used in textbooks, especially for the 

case of peak-like function. This is especially important, as some of papers insist on 

using Simpson’s rule in chromatographic integration software [8]. 
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2. Theory 

2.1. Notations and formulas 

Variable x stays for elution time, volume, distance or other independent retention 

parameter  

Peak is a real analytic (in the math sense) function f(x) of one real variable x, such that 

the function itself and all its derivatives can be considered equal to zero outside of finite 

interval 𝑥 ∈ (𝑎, 𝑏). Mathematical term “Analytic” means, that we can use Taylor series 

for analysis of the function.  

Our definition of peak is too simple from the rigorous mathematical point of view, but 

perfectly fits the case of experimental data processing. It allows us to avoid using o(), 

O() and ∑, presenting just the ideas of proofs in the simplest way. Exact zero outside 

the interval (a,b) is not a must, but in practice of data processing all experimental data 

are produced by some analog-to-digital converters (ADCs), that output integers as a 

result of conversion. Signal in the region, where peak function |f(x)| (with subtracted 

baseline) becomes smaller, than ADC conversion unit (or baseline noise), can be 

considered as zero together with all statistically significant derivatives. Experimental 

data processing should be arranged so, that derivatives, which cannot be measured 

with sufficient accuracy, can be neglected. 

Data grid (frame). We assume, that function f(x) is measured or calculated at discrete 

set of N+1 points {x0, x1, x2, … x
N
} with equidistant sampling period (step) h: 

𝑥𝑖 = 𝑎 + 𝑖 ∙ ℎ + 𝜀;  𝑖 = 0 … 𝑁; ℎ =
𝑏 − 𝑎

𝑁
; −ℎ/2 < 𝜀 < ℎ/2 

where ε is a digitization grid shift, which is a random real number uniformly distributed 

on the interval –h/2 < ε < h/2 (probability density equals to P(ε)=1/h inside this interval 

and P(ε)=0 outside it). The reason of introducing term ε is in the lack of advance 

knowledge about the position of the peak apex with respect to grid (e.g. due to 

variability of chromatographic retention time from run to run).  

Exponentially Modified Gaussian (EMG) function [10–13]  

𝑓(𝑥) = ℎ𝐺 ∙ 𝑒

−(𝜇𝐺−𝑥)
2

2𝜎𝐺
2

∙
𝜎𝐺

𝜏
∙ √

𝜋
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∙ erfcx (

1

√2
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𝜎𝐺
+
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𝜏
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where hG is height, μG – position of the apex, σG – standard deviation of unmodified 

Gaussian; τ – time constant of modifying exponent; erfcx() – scaled complementary 

error function [14]. Dispersion of EMG σ2 can be calculated [10–13] as 𝜎2 = 𝜎𝐺
2 + 𝜏2 

Euler-MacLaurin formula [15]  

∫ 𝑓(𝑥)𝑑𝑥 = ℎ (∑ 𝑓(𝑥𝑖) −
𝑓(𝑥0)+𝑓(𝑥𝑁)

2

𝑁
𝑖=0 ) + ∑ ℎ2𝑘 𝐵2𝑘

(2𝑘)!
(𝑓(2𝑘−1)(𝑥0) − 𝑓(2𝑘−1)(𝑥𝑁)) + 𝑅𝑚

𝑚
𝑘=1

𝑥𝑁

𝑥0

           2 

where B2k is a Bernoulli number (B2=1/6; B4=-1/30; …), 2m is maximal derivative order 

used in calculation and Rm is a remainder term, evaluating contribution of derivatives, 

higher than 2m. We present Euler-Maclaurin formula not exactly like in textbook, but 

solved for integral part.  

Peak moments 

Zeroth peak moment is peak area 

𝑀0 = ∫ 𝑓(𝑥) 𝑑𝑥
∞

−∞
≈ ℎ ∙ ∑ 𝑓(𝑥𝑖)𝑁

𝑖=0        3 

First moment is average retention time (unfortunately, it is rarely used in 

chromatography) 

𝑀1 =
1

𝑀0
∫ 𝑥 ∙ 𝑓(𝑥) 𝑑𝑥

∞

−∞
≈

1

𝑀0
∑ (𝑥𝑖 ∙ 𝑓(𝑥𝑖

𝑁
𝑖=0 ))     4 

Second central moment is a dispersion of the peak (standard deviation σ is a square 

root of dispersion): 

𝑀2 = 𝜎2 =
1

𝑀0
∫ (𝑥 − 𝑀1)2 ∙ 𝑓(𝑥) 𝑑𝑥

∞

−∞
≈

1

𝑀0
∑ ((𝑥𝑖 − 𝑀1)2 ∙ 𝑓(𝑥𝑖

𝑁
𝑖=0 ))  5 

Other moments usually are presented not only central, but also normalized to σn. 

𝑀𝑛 =
1

𝑀0∙𝜎𝑛 ∫ (𝑥 − 𝑀1)𝑛 ∙ 𝑓(𝑥) 𝑑𝑥
∞

−∞
≈

1

𝑀0∙𝜎𝑛
∑ ((𝑥𝑖 − 𝑀1)3 ∙ 𝑓(𝑥𝑖

𝑁
𝑖=0 ))  6 

Instead of third moment, it is convenient to use estimate of parameter τ of EMG peak 

function with the same third moment [10–13]: 

τ=σ(M3/2)1/3
          7 

For simplicity of presentation digital formulas of moments correspond to Midpoint 

Rectangle integration rule. 
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Phase shift φ=ε/h 

Duty cycle – fraction of sampling period where function (signal) is averaged during 

measurement. Can be expressed as a fraction of one or in percent. All considerations of 

this paper correspond to instantaneous measurements with duty cycle of 0.0. For 

integrating ADC with duty cycle 1.0, peak area is defined by the sum of measurements 

by default and even one-point peak in the absence of noise will have exactly measured 

area. Duty cycle for the first dimension in the 2-D chromatography is usually close to 

1.0, while duty cycles for fast scanning UV detectors or single quadrupole GC-MS are 

close to 0.0.  

Data rate ν=σ/h 

2.2. Integration rules 

The task of integration is to estimate area – definite integral of function f(x) on (a, b).  

All composite integration rules can be represented by a single formula:  

)()(
0

i

N

i

i xfxwhA 
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Where A is area, w(xi) – weight coefficients. Rectangle, Trapezoidal, Simpson’s and 

other composite integration rules differ from each other by the set of coefficients w(xi). 

2.2.1. Rectangle and Trapezoidal rules give identical peak areas 

Let us set limits of summation in formula 8 so, that f(x1)= f(xN)=0 according to our 

definition of peak. For the Rectangle rule, all coefficients are ones w()={1,1,1,…,1,1,1}. 

Weight coefficients of Trapezoidal rule are w()={1,2,2,…,2,2,1}/2. As peak function is 

equal to zero on the boundaries of the integration interval, areas of the peak calculated 

using Rectangle and Trapezoidal rules are exactly equal.  

In general case we should note that integration limits for composite Midpoint Rectangle 

rule are from position x0-h/2 to position xN+h/2, and integration limits for Trapezoidal rule 

are from x0 to xN. If we adjust integration limits for Midpoint Rectangle rule to those of 

Trapezoidal rule by throwing away half of first and last rectangles, weight coefficients of 

two rules will exactly coincide; their common weight formula is that of Trapezoidal rule. 

2.2.2. Simpson’s composite integration rule provides two estimates 

Simpson’s 1/3 (further named just Simson’s) rule utilizes parabola built for three 

successive points (Figure 1). It has coefficients w()={1, 4, 1}/3 for three successive 
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nodes (elementary rule) and w()={1,4,2,4,…,4,2,4,1}/3 for odd number of nodes 

(composite rule) [15]. In the case of peak, we can get two different estimates of area, 

shifting first point of integration frame by one point. These two implementations of 

Simpson’s rule give different results. In most cases, averaging two independent 

estimates improves accuracy of the answer. Averaging two implementations of 

Simpson’s rule gives the following set of weight coefficients: 

w() = ({0,1,4,2,…,4,2,4,1}/3 + {1,4,2,4,…,2,4,1,0}/3)/2 = {1,5,6,6,…,6,6,5,1}/6. 

When responses at boundary points (2 points on each side) are equal to zero, 

integration result, provided by “averaged” Simpson’s rule is exactly equal to that of 

Rectangle/Trapezoidal rule. Besides, this way of averaging is good to illustrate the 

problem but is not suitable in the software implementation. Below we discuss correct 

ways of composite Simpson’s rule averaging. 

2.2.3. Partial integration by Simpson’s and Euler-Maclaurin integration rules 

 

Figure 1. Elementary Simpson's figure split in two parts 

It is possible to split 3-point elementary Simpson’s region at the position of the middle 

point and calculate left and right half-areas separately as shown on Figure 1. Splitted 

areas have coefficients w()={5,8,-1}/12 for left part and w()={-1,8,5}/12 for right part. As 

expected, their sum equals {4, 16, 4} /12 = {1, 4, 1}/3. Left and right parts can be used 

to extend conventional Simpson’s composite integration rule by one point at the ends of 

integration interval, allowing even number of points in the integration region and shifting 

frame start by one point.  
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Now we construct averaged Simpson’s integration rules suitable for partial peak 

integration. Let’s assume that we have 7-point region and we want to integrate it using 

Simpson’s approach. No assumptions about zeros of function at the end of region are 

made. It is easy to apply one Simpson’s frame to this region, as number of points is 

odd; another frame needs to be extended at the ends. Constructed frames are 

averaged, and we get following integration rules: 

Table 1. Simpson’s averaged Rule 1 

Node index -1 0 1 2 3 4 5 6 7 Divisor 

Simpson 1  4 16 8 16 8 16 4  12 

Simpson 2   4 16 8 16 4   12 

Simpson 2  

add-on 

-1 8 5    5 8 -1 12 

Average(Rule1) -1 12 25 24 24 24 25 12 -1 24 

Trapezoidal 0 12 24 24 24 24 24 12 0 24 

Difference -1 0 1 0 0 0 1 0 -1 24 

 

Table 2. Simpson’s averaged Rule 2 

Node index -1 0 1 2 3 4 5 6 7 Divisor 

Simpson 1  4 16 8 16 8 16 4  12 

Simpson 2   4 16 8 16 4   12 

Simpson 2  

add-on 

 5 8 -1  -1 8 5  12 

Average(Rule2)  9 28 23 24 23 28 9  24 

Trapezoidal  12 24 24 24 24 24 12  24 

Difference  -3 4 -1 0 -1 4 -3  24 

 

Rules 1 and 2 differ from each other by the way, how area of the region x0 to x1 is 

calculated. In Rule 1, we use right part S2 of (x-1, x0, x1) Simson’s elementary figure; in 
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Rule 2 left part S1 of (x0, x1, x2) figure. Selection of the rule depends on availability of 

function estimate f(x-1) at point x-1 outside the region being integrated. It is easy to see, 

that composite Rules 1, 2 differ from Trapezoidal rule at boundaries only. Note, that 

both rules give exact answer in the case of parabola integration. Integration region can 

be extended to any number of points, even or odd.  

Rules 1, 2 are implementations of Euler-MacLaurin formula 2 derived in 1738. First term 

of this formula is just a Trapezoidal rule sum. If we evaluate first derivative at point x0 as 

f'(xo)≈(f(x1)-f(x-1))/2h , 

calculate add-on from the k=1 member of the second sum in formula 2: 

ℎ2 𝐵2

2!
𝑓′(𝑥0) ≈

ℎ2

12
(

𝑓(𝑥1)−𝑓(𝑥−1)

2ℎ
) =

ℎ

24
(𝑓(𝑥1) − 𝑓(𝑥−1))  

and use this term to modify Trapezoidal rule, we will get exactly coefficients of Rule 1. If 

the first derivative is evaluated at point x0 using values f(x0), f(x1) and f(x2) we will get 

coefficients of Rule 2. Therefore, Rules 1 and 2 can be considered as rules, derived 

from Euler-Maclaurin formula, with first derivative term included, and named Euler-

Maclaurin rules. Note, that it is not a must, that Rules 1, 2 or their average will work 

better than trapezoidal rule for very narrow peaks, as in this case derivative, calculated 

by finite differences, is very inaccurate. 

In the case of peak integration we can extend grid and peak boundaries by one or two 

points so, that area, calculated by any of Euler-Maclaurin rules, equals that of 

Rectangle/Trapezoidal rule. We can conclude that Rectangle, Trapezoidal and Euler-

Maclaurin’s (or averaged Simpson’s) integration rules provide identical results, when the 

same discrete stand-alone peak is considered. Textbook statement, that error of 

composite Simpson’s rule is much smaller, than error of Trapezoidal rule, for the case of 

peaks has to be reconsidered. 

2.2.4. Trapezoidal rule is the most efficient integration rule for the whole peak 

We can represent composite Simpson’s rule coefficients 

w() = {1,4,2,…,4,2,4,1}/3 

as w() = {1,2,2,…,2,2,2,1}/3 + {0,2,0,…,2,0,2,0}/3   9 

Note, that first summand of formula 9 is 2/3 of “traditional” Trapezoidal rule with step h 

and second summand is 1/3 of Rectangle rule with the step 2h.  
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We can evaluate error of this rule, assuming that error E of composite Trapezoidal rule 

depends on step size as E∾O(h2). Then error of the rule with double step is 

E2h≈22E=4E. In the case of formula 9 two summands and their errors are strongly 

correlated, so we should sum up errors, not dispersions. Total error Es of the estimate 

can be evaluated as  

Es≈2E/3+E2h/3≈2E/3+4E/3≈2E 

That is, Simpson’s rule in integration of peaks is approximately twice less accurate than 

Trapezoidal rule provided Trapezoidal rule error has O(h2) dependence. Real 

correlation of errors of h- and 2h-step estimates may be slightly below one, as 2h-

estimate has only one of two measurements of the h-estimate, but error drop 

coefficients may be significantly higher than 4 if error drops down faster than O(h2). 

From the theory we should expect exponentially-small function of 1/h [15], so error will 

drop much faster than evaluated. In this case, major part of error comes from the 

second summand of formula 9, and to achieve the same accuracy as Trapezoidal rule, 

Simpson’s rule should have approximately twice higher data rate.  

Increase of error in peak integration exists for all other composite integration rules with 

periodically repeating coefficients. E.g. Simpson’s 3/8 rule can be represented as 

weighted superposition of original Trapezoidal rule with step h and Rectangle rules with 

step 3h and thus its error should be even higher than error of 1/3 rule. Trapezoidal rule 

with smallest step has the lowest possible estimate error, and therefore this estimate is 

efficient.  

We do not consider here errors, caused by noise. Besides, difference of the two 

Simpson’s estimates in the presence of highly correlated noise can be quite big, that 

means, that Simpson’s rule is not robust with respect to noise.  

2.2.5. Average Rectangle/Trapezoidal rule area estimate equals true peak area 

We can approximate the function in the neighborhood of every node by Taylor series, 

𝑓(𝑥𝑖 + 𝜏) = 𝑓(𝑥𝑖) + 𝑓′(𝑥𝑖) ∙ 𝜏 +
1

2
𝑓′′(𝑥𝑖) ∙ 𝜏2 + ⋯ +

1

𝑛!
𝑓(𝑛)(𝑥𝑖) ∙ 𝜏𝑛 + ⋯ ;  − ℎ/2 < 𝜏 < ℎ/2,  

For the purpose of evaluation of full definite integral, each term of Taylor series should                                                    

be definitely integrated by τ in the (-h/2, h/2) neighborhood of every node. Integrals of 

terms with odd degrees of τ are equal to zero, as function g(τ)= τ (2k+1) is odd, g(-τ)=-g(τ), 
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and integral of odd function on the symmetric (-h/2, h/2) neighborhood equals zero. 

After integration of Taylor series peak area A can be evaluated by the sum  

𝐴 = 𝐴0 + ∑ ∆𝐴2𝑘
∞
𝑘=1        10 

where  

𝐴0 = ℎ ∙ ∑ 𝑓(𝑥𝑖)

𝑁

𝑖=0

 

is area, calculated by Rectangle rule, and 

∆𝐴2𝑘 =
2

(2𝑘+1)!
(

ℎ

2
)

2𝑘+1

∙ ∑ 𝑓(2𝑘)(𝑥𝑖)
𝑁
𝑖=0 = 𝐾2𝑘 ∙ ∑ 𝑓(2𝑘)(𝑥𝑖)𝑁

𝑖=0   11 

is add-on term from (2k)-derivative. 

For k=1 this term equals  

∆𝐴2 =
2

6
(

ℎ

2
)

3
∑ 𝑓′′(𝑥𝑖)

𝑁
𝑖=0 =

ℎ3

24
∑ 𝑓′′(𝑥𝑖)

𝑁
𝑖=0       12 

We can compare this term with the estimate of integration error used in [8].  

𝐸 = 𝐼𝑡𝑟𝑢𝑒 − 𝐼𝑚𝑒𝑎𝑠 = (
𝑊𝑏

3

12𝑛2) |𝑓′′(𝑥)|     13 

where Wb is the peak base width; |f’’(x)| is the absolute value of the second derivative of 

the function with respect to retention parameter x. If we replace Wb=N∙h and evaluate 

|f’’(x)| as maximum of the second derivative, formula 13 can be written as 

𝐸 =
ℎ3

12
∙ 𝑁 ∙ max

𝑥∈(𝑎,𝑏)
(|𝑓′′(𝑥)|)        14 

We should not pay too much attention to coefficients; the major difference is between 

sum of second derivatives in formula 12 and N times maximum derivative in formula 14. 

As we will see later, expected value of the sum of derivatives equals zero, and N times 

maximum derivative in formula 14 is comparatively quite a big number. Even if we 

would use sum of modules of the second derivative instead of N times maximum, we 

would get significantly overestimated integration error. Theory of errors states, that 

there exists a number t=ξ between a and b, such that formula 13 is valid. In the case 

when region contains both convex and concave parts, |f’’(ξ )| can be quite small. This 
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means, that formula 13 in the interpretation formula 14 as used in [8] just is not suitable 

for error evaluation in the case of peaks.    

Now we should calculate average of A0 and every term ∆A2k on epsilon 

A0
̅̅ ̅ = ∫ 𝐴0(𝜀)𝑃(𝜀)𝑑𝜀 = ℎ ∙

ℎ/2

−ℎ/2

∫ ∑ 𝑓(𝑥𝑖) ∙
1

ℎ
𝑑𝜀

𝑁

𝑖=0

ℎ/2

−ℎ/2

= ∑ ∫ 𝑓(𝑖 ∙ ℎ + 𝜀)

ℎ/2

−ℎ/2

𝑑𝜀 = ∫ 𝑓(𝜀)

𝑏+ℎ/2

𝑎−ℎ/2

𝑑𝜀 = 𝐴

𝑁

𝑖=0

 

is true area of the peak, and 

∆A2k
̅̅ ̅̅ ̅̅ ̅ = ∫ ∆𝐴2𝑘(𝜀)𝑃(𝜀)𝑑𝜀 =

1

ℎ
∙

ℎ/2

−ℎ/2

𝐾2𝑘 ∙ ∫ ∑ 𝑓(2𝑘)(𝑥𝑖)𝑑𝜀

𝑁

𝑖=0

ℎ/2

−ℎ/2

=
1

ℎ
∙ 𝐾2𝑘 ∙ ∑ ∫ 𝑓(2𝑘)(𝑥𝑖)𝑑𝜀

ℎ/2

−ℎ/2

𝑁

𝑖=0

 

is average add-on term from (2k)-derivative. We should note, that sum of integrals of 

(2k)-derivatives in neighborhoods of all nodes equals full integral of this derivative. This 

sum  

∑ ∫ 𝑓(2𝑘)(𝑥𝑖)𝑑𝜀

ℎ/2

−ℎ/2

𝑁

𝑖=0

= ∑ ∫ 𝑓(2𝑘)(𝑖 ∙ ℎ + 𝜀)𝑑𝜀

ℎ/2

−ℎ/2

𝑁

𝑖=0

= ∫ 𝑓(2𝑘)(𝜀)𝑑𝜀

𝑏+ℎ/2

𝑎−ℎ/2

= 𝑓(2𝑘−1)(𝑎 − ℎ/2) − 𝑓(2𝑘−1)(𝑏 + ℎ/2) = 0 

equals zero for the peak function for any positive integer k. Hence, average on ε value 

of ∆A2k equals zero. After averaging, formula 10 has only one non-zero term A0 left. 

Hence, area A0 measured by Rectangle rule being averaged on ε equals true area of 

the peak. Dispersion of estimate by Midpoint Rectangle rule depends on the distribution 

of the sum ∑∆A2k(ε) on ε. This sum obviously depends on the function being integrated. 

3. Digital modelling  

Theoretical considerations were verified by digital simulations and processing of 

experimental data presented below. We estimated maximum integration error of 

Trapezoidal and Simpson’s rules for three model peak shapes, including Gaussian, and 

one experimental peak shape.  
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3.1. Simulation 

Model peak shape was described by Exponentially Modified Gaussian (EMG) function 

[10–13]  

Three model peak shapes were considered: symmetric (Gaussian, τ=0), slightly 

asymmetric (EMG-1, τ=σG) and strongly asymmetric (EMG-3, τ=3σG). Data rate varied 

from 0.4 to 3.2 measurements per σ.  

Figure 2. Examples of generated peaks. Abscissa – data point ordinal number; ordinate – modeled detector 
response. Parent peak is Gaussian, σG=0.4 

All responses were given as integers. Heights of continuous peaks (hG) were equal to 

105 units, corresponding to full range of 17-bit ADC. For each particular peak shape and 

data rate, 100 different discrete peaks were generated. These peaks differed in phase 

shift of digitization grid nodes relative to apex of continuous peak (each successive 

discrete peak was shifted by 0.01 of the node-to-node distance). For convenience, each 

set of 100 peaks was located on the same chromatogram. Three discrete peaks are 

shown in Figure 2 as an example. All peaks were baseline-separated, intensity reached 

zero in the space between adjacent peaks. All modeled chromatograms were “noise-

free”. Baseline level equals zero. To calculate area (zero-order moment M0) of 

chromatographic peak all non-zero responses and additionally two nearest zero 

responses on each side of the peak were integrated by the formula 8 with coefficients of 

Trapezoidal and Simpson’s rules. Model data and calculations for Gaussian peak are 

available in the file supplementary.xlsx 

3.2. Experimental peak 

Experimental peak of nitrate was extracted from calibration chromatogram (Figure 3) 

recorded by ICNet 2.0 software (Metrohm AG, Switzerland) [16]. 
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Figure 3. a) Fragment of calibration chromatogram with Nitrate peak. b) Baseline part of the peak amplified 

Metrohm advanced IC chromatograph was used, consisting of 732 IC detector, 733 IC 

separation center, 709 IC pump. Column 4.6x75mm packed with Metrosep Anion Dual 2 

6.1006.100, flow rate 1 ml/min, eluent 2 mmol/L NaHCO3 / 1.3 mmol/L Na2CO3. Data 

rate was 10 pts/s. 

Raw data were exported to text file and imported to Excel software. Peak consisted of 

1543 points (Figure 3a), full width at half maximum 226 points, height 1.76*106 

conversion units; peak start, end and baseline were as they are shown on Figure 3b. 

Baseline was subtracted from initial raw data. Corrected peak was integrated by 

Trapezoidal rule and its moments were calculated. Second central moment was used to 

calculate peak standard deviation (σ), which was found to be 112.1 points. This σ was 

later used as σini of the peak. Zeroth moment M0 (Area) was used as “true” area of the 

peak. Then for J=60 to J=230 step 10 every J’th point was picked from the corrected 

peak to form a new partial peak, and this partial peak was integrated having in mind J 

times higher time constant. J frames were used, differing by the first point of digitization 

grid, providing J partial peaks. Digitization error was calculated as maximum absolute 

difference between “true” area and area calculated from partial peaks. σtrue in points for 

the partial peak was calculated as initial sigma divided by J: σtrue= σini/J. 

4. Results and discussions 

In accordance with literature data, we considered two thresholds of peak integration 

error: 1% and 0.1%. For target level of uncertainty 0.1%, minimum length of integration 

interval of Gaussian function equals ±4.0σ or ±3.3σ, depending on baseline position 

(Figure 4). Our calculations used definition from Figure 4b. 
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Figure 4. Examples of peak area distortion depending on integration model. a) baseline is drawn between peak 
points; b) “true” baseline is used 

As expected, mean error of peak area (calculated over 100 discrete peaks using 

Rectangle/Trapezoidal rule) was equal to zero; example peaks from the series are 

presented in Figure 2. As can be seen in Figure 5, dependence of peak area error on 

shift of digitization grid resembles sine wave. Similar curves for Simpson’s 1/3 and 3/8 

rules together with raw data are available in supplementary.xlsx file. 

 

Figure 5. Dependence of peak area error, calculated by Trapezoidal rule on phase shift. Peaks had Gaussian shape, 
σG=0.4. Shape of generated peaks is shown in Figure 2 

Figure 6 illustrates dependence of maximum peak area error on data rate. We are using 

peak σ as a measure of peak broadness, not Full Width at Half Maximum (FWHM) used 

in many papers. The reason for that is in the fact, that neither height, nor FWHM can be 

evaluated for narrow peaks like those from Figure 2, while σ can be evaluated from the 

available set of data points. Besides, data rate is normalized to true standard deviation 

of original peak, and not to standard deviation, calculated from the particular generated 

peak. 
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Figure 6. Dependence of maximum error of peak area (calculated by Trapezoidal and Simpson’s rules) on data 
acquisition rate. Peaks of different shape were considered: Gaussian, EMG-1, EMG-3 and experimental (real) data. 

It’s easy to see from Figure 6, that maximum error drops down very fast as data rate 

increases. This conclusion is true for generated and experimental peaks. Drop down 

rate is even slightly faster, then exponential, as curves are slightly convex; this supports 

the conclusion made in Theory, that error of peak integration by Trapezoidal rule should 

be described as an exponentially-small function of 1/h rather as O(h2). Our results for 

peaks of different shapes are summarized in Table 3.  

Table 3. Minimum data rates to measure peak area. All values in pts/σtrue 

 Trapezoidal rule Simpson's rule 

Threshold 1% 0.1% 1% 0.1% 

Gaussian 0.52 0.62 0.92 1.15 

EMG-1 0.65 0.80 1.14 1.46 

EMG-3 1.28 1.64 2.17 2.96 

  

Experimental peak integration by rectangle rule give errors slightly higher than those of 

EMG-1 (Figure 6). Attempt to approximate this peak with EMG as described in [13] 

gives τ/σG ratio of 0.64 and residual error of deconvolution (average RMS error divided 

by average response) of 2.3%. This residual error should be considered high compared 
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to target uncertainty level of 1% or 0.1%, so we should not expect that integration errors 

correspond to evaluated τ/σG value; peak shape significantly deviates from EMG. 

It’s clear from Figure 6, that Trapezoidal rule performs for peaks much better, than 

Simpson’s rule, confirming our theoretical conclusions. Maximum error of Simpson’s 

rule was calculated for both frames of the rule without averaging. Error of Simpson’s 

rule can be compared to error of trapezoidal rule using curves for integration of 

Gaussian from Figure 6: lowest point for Trapezoidal rule is (0.67pts/σ, 0.029%) and 

second highest point for Simpson’s rule error is (0.72pts/σ, 5.4%). Error of Simpson’s 

rule at 0.67 pts/σ is higher, than at 0.72 pts/σ, therefore error of Simpson’s rule at 

0.67pts/σ is at least 5.4/0.029=186 times higher, than error of Trapezoidal rule. As can 

be expected from Theory, Simpson’s 3/8 rule perform for peaks even worse, than 1/3 

Rule (see supplementary.xlsx). 

Proper estimate of Gaussian peak area by Simpson’s rule requires 1.15 pts/σ for 0.1% 

precision or 1.8 times higher data rate, than for Trapezoidal rule. This fully supports the 

conclusion made in Theory that Simpson’s rule requires approximately twice-higher 

data rate to achieve the same precision as Trapezoidal rule. Higher value (1.7 pts/σ) 

proposed by Kishimoto and Musha [2] overestimates required data rate, as it is obtained 

from textbook formulas and does not account exceptional integration properties of all 

rules applied to peaks. Goedert and Guiochon used criteria (Table 1 in [5]), required for 

reconstruction of peak height rather than area, and thus their estimates of required data 

rates are also much higher than ours. 

The reason, why Rectangle/Trapezoidal rule performs for peaks so well is in the nature 

of the peak function: as full integral of every peak derivative is zero, errors, caused by 

this derivative in one peak region are (almost) compensated at other regions. Simpson’s 

rule in the case of peak also has efficiency higher than “normal” O(h5), but it’s less 

efficient than Trapezoidal rule (Figure 6). 

Simpson’s rule seems to be never good in processing of peaks, as it gives two different 

results, depending on index of integration start point (see Theory). After averaging, 

these two values will give exactly the same peak area estimate, as Rectangle and 

Trapezoidal rules. Without averaging, original Simpson’s rule gives error that is more 

than hundred times bigger, than that made by Rectangle/Trapezoidal rules as seen from 

our simulation. Therefore, in the case of peaks, superior accuracy of Simpson’s rule 

compared to Trapezoidal rule seems to be just a myth, created by textbooks by 
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manipulation of error estimates. Formula 14 exaggerates error of full peak area 

evaluated by composite Trapezoidal rule by several orders of magnitude. 

Exceptional efficiency of Trapezoidal rule in the case of integration of periodic functions 

with integration interval equal to function period was noted long ago [15]. This efficiency 

is caused by the fact that all derivatives at the ends of integrated interval are equal, and 

all derivative terms disappear from Euler-Maclaurin formula 2. Similar situation is valid 

for peaks. According to our definition, peak function has zero derivatives on the edges. 

In this case, all derivative terms of Euler-Maclaurin formula are zero and peak area 

exactly equals Trapezoidal rule area. Our simulation experiments have shown that this 

statement is not true at very low data rates. Apparent disagreement indicates that our 

peak definition is not perfect, and some of high-order derivatives may become 

significant at very low data rates. This problem does not have easy solution, as at very 

low data rates all schemes of derivative calculation based on finite differences stop 

working. If we have access to formulas of the function and its derivatives, the problem 

can be resolved using these formulas.  

We tested different integration rules applied to partial integration of Gaussian peak (see 

supplementary file Rules_Erf.xlsx). In the case, when we assume equation for 

calculation of derivative to be known, results of integration using “true” Euler-Maclaurin 

rule with calculated derivatives have extraordinarily high precision. Euler-Maclaurin 

formulas with derivatives, calculated by finite differences, are much less precise, as well 

as composite Simpson’s rule. 

In the case of experimental data processing, in particular for peak integration, we have 

to work in the data rate region, where required part of the integral belongs to 

Trapezoidal rule sum. It is possible to understand, whether data rate is high enough, by 

digital modelling which we summarized in Figure 6. Required data rate depends on 

peak function (peak shape). In the case of peaks, dependence of Trapezoidal rule 

contribution on data rate is monotone (Figure 6), error drops down exponentially on 1/h, 

and thus at threshold and higher data rates (sufficient data rate) it’s safe to use 

Trapezoidal rule.  

In the case of peak, digitized with sufficient data rate, the function itself and all 

derivatives are negligibly small on boundaries, thus formula 2 gives Trapezoidal rule 

area. For partial peak integration, estimates of function and its derivatives should be 

made by approximation of function and only statistically significant derivative terms 
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should be accounted for. Euler-Maclaurin rules as presented in Tables 1, 2 are suitable 

for partial integration of math functions at sufficient data rates only. 

 

Figure 7. Dependences of maximum error of M1 (a), σ (b) and τ (c) calculated by Trapezoidal rule on data acquisition 
rate. Error values are normalized to true sigma 

As can be seen from the formulas 3-7, each peak moment is the integral of the product 

of peak function f(x) and some other function g(x). As defined in 2.1, f(x) equals zero 

outside the interval (a, b). Therefore, product of f(x) and g(x) equals zero outside this 

interval as well, and all functions located under integral sign (i.e. f(x)·g(x)) can be 
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considered as peak functions. In reality for some type of functions, typically treated as 

peaks, such as Cauchy function, moments cannot be treated as peaks. Besides, in the 

case of exponentially decreasing functions, such as Gaussian or EMG, they can. As 

moments are evaluated by integration of peak-like function, all considerations, 

concerning area integration, are valid, and estimate of moments by Trapezoidal rules is 

very efficient and its average equals true value of the moment. 

Dependences of maximum errors of Trapezoidal rule estimates of average retention 

(M1), standard deviation (σ=M21/2) and relaxation time (τ=σ·(M3/2)1/3) on data 

acquisition rate are shown in Figure 7. For Gaussian peak we had to set hG=109 to 

construct τ curve, as at hG=105 response rounding error became significant at data rates 

higher than 0.75 pts/σ; so it is not clear, how much one can rely on τ estimate for narrow 

peaks in practice. As we are studying data rate (discretization) errors, we checked, that 

errors, produced by rounding of real number to integer (simulating Analog-to-Digital 

Conversion) for all peak moments are negligible. Rounding errors may become 

significant for smaller peak heights (lower ADC resolution). One should also have in 

mind, that higher-order moments are more sensitive to noise. Corresponding minimum 

data rates are summarized in Table 4. Target levels of uncertainty for calculated M1, σ, 

τ in Table 2 are selected having in mind, that these parameters are used in various 

validation criteria, rather than quantitative analysis. All values are normalized to true σ, 

and absolute errors are quite small: data rate, corresponding to the first moment M1 

error of 0.1σtrue, is 0.45 pts/σ; so, maximal absolute error equals ΔM1 = 0.1 ∙ 0.45 = 

0.045 pts, hence retention M1 measured in points has at least one valid decimal digit at 

this and higher data rates. At data rate above 0.58 pts/σ two significant decimal digits of 

M1 are guaranteed.  

 Table 4. Minimum data rates to measure M1, σ, τ by Rectangle or Trapezoidal rule. All 

values in pts/σtrue. 

 Average retention M1 Standard deviation σ Asymmetry τ 

Threshold 0.1∙σtrue 0.01∙σtrue 0.1∙σtrue 0.01∙σtrue 0.1∙σtrue 0.01∙σtrue 

Gaussian 0.45 0.58 0.48 0.61 0.77 0.99 

EMG-1 0.53 0.71 0.54 0.74 0.60 0.79 

EMG-3 0.88 1.33 0.75 1.29 0.61 1.17 
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Every analysis is an implementation of the measurement process. Within our model, 

this process has random parameter ε – distance from (true) peak apex to nearest point 

of digitization grid. Every chromatographic peak has only one random value of this 

parameter implemented, adding random integration error, corresponding to this ε, to the 

result. Maximum on ε deviation is the worst-case error, caused by discretization. It 

should be noted, that in this work we evaluated maximum errors of peak parameters 

(M0, M1, σ and τ), rather than respective standard deviations. Standard deviation is 

lower than maximum error, so our results can be considered as an upper limit of the 

error; besides, probability distribution of the error value in this case has quite specific 

bimodal shape (Figure 8) and most probable error value equals maximum on ε 

deviation. Such probability distribution makes maximum error and standard deviation 

very close to each other. 

 

Figure 8. Histogram, reflecting probabilities of different deviations of area from the mean (see Figure 5) 

Table 3 should be used in conjunction with error propagation law. Values in this table 

are just a basis for decision, whether data rate error is significant or not compared with 

errors from other sources, such as noise. If we assume that EMG-3 corresponds to the 

worst acceptable in chromatography peak shape, then peak can be considered to be 

too narrow, when it has 1.64 pts/σ (Table 1) or less. If data acquisition rate is higher 

than 1.64 pts/σ, integration error of area caused by signal discretization is not significant 

even for the most accurate analytical procedures. In the case of reasonably symmetric 

peaks much lower data rates are acceptable (Table 1). 
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In this paper main attention is given to measurement of chromatographic peak area and 

higher moments. Other parameters, such as retention time, height, full width at half-

height, asymmetry factor were not considered. Estimates of data rates for these 

parameters made formerly [1–7]  seem reasonable. We can propose that in the case of 

very low number of points per peak these parameters are replaced by other more robust 

ones (retention time – first moment or median time; width – standard deviation or 

distance between 25% and 75% quantiles; asymmetry – estimate of relaxation time τ or 

quantile spans ratio). Height has no definite robust analog; it can be evaluated as a 

function of area/σ ratio, or it can be calculated via peak reconstruction. Probably, for 

narrow peaks height should not be used at all.  

If peak shape is known in advance, peak reconstruction may be done instead of 

integration by Rectangle/Trapezoidal rule. Theoretically, reconstruction of peak shape 

requires three data points for Gaussian and four points for EMG. If more points are 

available, respective equation system is overdetermined and can be solved by least 

square minimization [17]. Reconstruction by Fourier Transform Analysis seems also 

very efficient [18]. All proper reconstruction methods would provide very precise set of 

numbers for all shifted peaks, generated in our examples; differences between numbers 

of the set would be caused only by limitations of computer math used for modelling. 

Probably, peak reconstruction is the future of data processing. Besides, reconstruction 

methods in the case when model is wrong or in the presence of noise may be less 

robust than Trapezoidal rule integration. Initial guess of parameters for peak 

reconstruction procedures may also effectively utilize information about peak moments. 

This paper is most valuable to researchers, working with narrow chromatographic peaks 

in GC/MS, 2D chromatography, fast chromatography. We are not sure, that we are the 

first, who found why Rectangle and Trapezoidal rules give extraordinarily efficient 

estimate of the whole peak area: mathematics of this kind can be met in all fields, and 

time span to investigate is nearly 300 years. We are not able to perform complete 

literature search in this case. Nevertheless, we are confident that considerations 

presented above are not available in the popular textbooks or chromatographic 

literature and it is important to draw the attention of the chromatographic community to 

the issue.  
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5. Conclusions 

 Narrow peaks are suitable for quantitative analysis by Trapezoidal rule 

integration at very low data rates; minimal data rates for 0.1% accuracy vary from 

0.62 to 1.64 pts/σ depending on peak shape; 

 Composite Trapezoidal rule provides efficient estimate of the full peak area with 

average (on relative position of peak and digitization grid) value equal to true 

area of the peak;  

 Composite Simpson’s rule requires 1.8 times higher data rate to achieve 

efficiency, provided by Trapezoidal rule; 

 Composite Simpson’s rule averaged for two frames provides estimate equivalent 

to the rule based on Euler-Maclaurin formula; 

 Peak moments for exponentially decaying peaks, such as Gaussian or 

Exponentially Modified Gaussian functions are also peak functions, and can be 

efficiently evaluated using Trapezoidal rule;  

 Errors of peak area estimate by all rules drop down exponentially on data rate. 

Funding: The work was partially supported by Russian Foundation for Basic Research, 

research project No. 16-33-60169 mol_а_dk 

 

6. Supplementary files 

Data set https://data.mendeley.com/datasets/xs7b5ckzsj/draft?a=b120e72f-e523-4ac2- 

af16-604a1e963a0b 

Excel file Supplementary.xlsx 

Demonstration of performance of different integration rules (Trapezoidal, Simpson's 1/3 

and Simpsons's 3/8) applied to full integration of Gaussian. Graphs similar to Figure 5 

for all three rules are constructed. Error of all rules drops down abnormally fast as data 

rate increases. Trapezoidal rule performs best and Simpson’s 3/8 worst in full 

accordance with paragraph 2.2.4 of Theory section. 

Data set https://data.mendeley.com/datasets/pvsyjfv5th/draft?a=d3fe6f80-80c4-4230- 

a56e-69e681e497cf 

Excel file Rules_Erf.xlsx 
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This spreadsheet demonstrates errors of partial integration of Gaussian peak using 

different rules. Peak section is digitized using 3,5,7,9,11 or 15 points. Integration is 

performed using Trapezoidal, Simpson's, and rules based on Euler-Maclaurin formula. 

Column with the name Euler-Maclaurin contains rule with properly calculated first 

derivative term. Columns Average rule 1, Average rule 2 and (Av.rule 1 + Av.rule2)/2 

correspond to Euler-Maclaurin formula with 1st derivative calculated using finite 

differences as described in Theory section of the paper. True Euler-Maclaurin rule is 

always the best. Trapezoidal rule is preferable at very low data rates (less than 0.7 

pts/sigma) and full area integration. Errors of Simpson's 1/3 and Average rule1, 2 and 

(Av.1+Av.2)/2 rules are comparable, as all of them account for the second derivative 

term of Taylor series and use finite differences. 
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8. Figure Captions 

Figure 1. Elementary Simpson's figure split in two parts 

Figure 2. Examples of generated peaks. Abscissa – data point ordinal number; ordinate 

– modeled detector response. Parent peak is Gaussian, σG=0.4 

Figure 3. a) Fragment of calibration chromatogram with Nitrate peak. b) Baseline part of 

the peak amplified 

Figure 4. Examples of peak area distortion depending on integration model. a) baseline 

is drawn between peak points; b) “true” baseline is used 

Figure 5. Dependence of peak area error, calculated by Trapezoidal rule on phase shift. 

Peaks had Gaussian shape, σG=0.4. Shape of generated peaks is shown in Figure 2 

Figure 6. Dependence of maximum error of peak area (calculated by Trapezoidal and 

Simpson’s rules) on data acquisition rate. Peaks of different shape were considered: 

Gaussian, EMG-1, EMG-3 and experimental (real) data. 

Figure 7. Dependences of maximum error of M1 (a), σ (b) and τ (c) calculated by 

Trapezoidal rule on data acquisition rate. Error values are normalized to true sigma 

Figure 8. Histogram, reflecting probabilities of different deviations of area from the mean 

(see Figure 5) 

 


